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the longer leg of the bridge is to B1]z which is bound to 
two such hydrogen atoms. 

The closest approach of hydrogen atoms within the 
molecule is 1.98A. The intermolecular contacts are all 
through hydrogen atoms, and the shortest distances are 
in the range 2.5-3.0A. 

Chemical implications 
In attempting to understand the strange structure of the 
molecule and the peculiar bonding within it, the most 
successful interpretation has been in terms of resonating 
single bonds, such as used by Pauling (1947) in de- 
scribing metallic binding. 

In Fig. 12 there are given (in addition to the bond 
distances) bond numbers, as defined by Pauling. They 
have not been derived from the equation of Pauling 
relating bond number to interatomic distance, but as 
follows. Each of the regular B-H's  is considered to be 
a full covalent bond and hence of bond number 1. Four 
boron atoms (Bn, B~I, B v , By) then each have five 
equivalent bonds to boron, among which two electrons 
are to be distributed. These bonds are consequently 
assigned a bond number of 0.4. In order to keep the 
valence of BII] at three, the longer legs of the hydrogen 
bridges would need to be of bond number 0.4 this in 
turn makes the bond number for the shorter legs 0.6 and 
for the long B-B bond 0.2. In other words, with this 
assignment of bond numbers each boron is trivalent and 
each hydrogen monovalent. The relation used by 
Pauling is R ( 1 ) - R  (n)=O.31ogn, where n is the bond 
number, and R (1) and R (n) are respectively the radius 
for a single covalent bond and for one of bond number n. 
From this relation the value of R (1) is 0.77A. if calcu- 
lated from the B-B bonds of 1-77 and 0.80A. from the 
long bond of 2.01 A. The value given by Pauling is 0"80 A. 

Although this description may not be the best one, it 
is rather definite that  the binding within the molecule is 
of the '  metallic' type with a mobile system of electrons, 
and for which the bonds have directional properties 
different from those ascribed to normal covalent 
linkages. 
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The Probability Distribution of X-ray Intensities. 
IV. New Methods of Determining Crystal Classes and Space Groups 
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The application of the two methods of intensity statistics, the ' distribution method' and the 'method 
of averages ', to the identification of the symmetry elements in a crystal is discussed. It is shown 
that each symmetry element has a distinct and recognizable effect on the weighted reciprocal lattice, 
and it is concluded that, from X-ray intensities alone, each crystal class may theoretically be identified 
uniquely. As a result 215 of the 219 space groups are also by these methods uniquely identifiable from 
X-ray data. Information concerning symmetry elements may also be obtained which is of value in 
structural investigations. A brief consideration is given to the remaining two pairs of space groups 
I222, 1212121 and I23, 1213. 

1. Introduction foreseeable cases, the distribution of the structure 
The recent theoretical work on X-ray intensity statistics amplitudes of the reflexions should conform to one or 
(Wilson, 1949, 1950) has shown that, except in certain other of two Gaussian types. When the structure 
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amplitude can be represented by F - x +  iy, the prob- 
ability distribution of the F vectors in the complex 
(x, y) plane has (except for low orders) circular sym- 
metry  and a Gaussian variation in the radial direction. 
This, when integrated over the annuli, gives the function 

1P(I) = S -~ exp ( - I /S) ,  (1) 

as the probability of finding a reflexion of intensity I .  
The quanti ty  S is the distribution parameter appro- 
priate to the set of reflexions under consideration. I ts  
possible values will be discussed in § 3. 

In  a set of reflexions whose structure amplitudes are 
systematically real (F = x + iO) the vectors are confined 
to the x axis and again have a Gaussian distribution 
which leads to the function 

iP(I )  = (2uSI)-t  exp ( -  I/2S) (2) 

as the probability in such a case. This implies a sub- 
stantially higher proportion of very weak and acci- 
dentally absent reflexions, a distinction arising directly 
f~om the integration geometry. 

Both intensity distributions have been confirmed 
experimentally by HoweUs, Phillips & Rogers (1949, 
1950), who have shown tha t  the distinction is suffi- 
ciently marked to provide a satisfactory and rapid 
means of discrimination. A statistical survey of the 
intensities to discriminate between these two distribu- 
tion functions will be referred to throughout this paper as 
the distribution method and is considered in detail in § 2. 

Wilson (1950) has also shown tha t  the average in- 
tensities of certain groups of reflexions are small integral 
mnltiples of those for the general reflexions. The groups 
affected and their average multiples, n, are character- 
istic of the symmetry elements in the space group. Thus 
a second statistical method is available for the identi- 
fication of symmetry elements. This, which will be 
called the method of averages, seeks zones or central 
reciprocal-lattice rows with abnormal intensity averages 
or distribution parameters. I t  is discussed fully in § 3. 

The object of this paper is to consider the extent to 
which these two new techniques permit the identifica- 
tion of crystal classes, space groups and those symmetry 
elements not hitherto identifiable by X-ray means. I t  
will be shown that  each symmetry element leaves a 
characteristic impress on the weighted reciprocal 
lattice~ which can now be readily recognized, a fact 
which transforms the problem of space-group identifica- 
tion and provides other valuable aids. 

Hitherto it has been possible to derive from the syste- 
matic properties of the X-ray data only the Laue 
symmetry  of the diffraction effects and evidence for 
those symmetry  elements involving translation, the 
former from the point-group symmetry of the intensity 

The weight assigned to each reciprocal-lattice point may  
be either the structure amplitude, F ,  or the intensity, IF  [3. 
These will be termed the  a m p l i t u d e  (or F)  a r r a y  and the i n t e n -  
s/ty (or I )  a r r a y  respectively; the  latter is referred to throughout  
this paper. The term array has been chosen to avoid the  
obvious ambiguity in the expression F (or I)  lattice. 

array and the latter from the systematic absences 
(F =-0) among the reflexions. The remaining symmetry  
elements were not known to produce other types of 
systematic peculiarity in the intensity array and could 
not, therefore, be recognized from X-ray evidence. 

A list of 121 diffraction symbols:~ was drawn up by 
Buerger (1942) to describe each of the patterns identi- 
fiable on the basis of Laue symmetry and systematic 
absences. In this way only forty-nine space groups and 
the eleven enantiomorphous pairs are determined un- 
ambiguously; these are scattered throughout the crystal 
classes. All the remaining diffraction symbols involve 
space-group ambiguities. 

No X-ray method was hitherto available for the 
identification of the crystal classes. Tests for pyre- and 
piezo-electricity are of value only when a positive result 
is obtained and often even then leave classes unresolved, 
e.g. 2 and m. Morphological examinations are not always 
possible and may prove misleading. On the other hand, 
since such tests can be applied more quickly than those 
to be discussed in this paper, the new methods should 
be regarded as supplementary. They are capable of 
giving unequivocal decisions, subject to certain con- 
ditions being fulfilled (Howells et al. 1950), but would 
be used to arbitrate only when the quicker methods fail 
or yield doubtful results. The ability of Patterson 
syntheses to discriminate in some suitable problems is 
recognized. Harker sections and in particular Buerger's 
implication technique (1946) are also useful, but  their 
value in dealing with typical complex and 'featureless'  
organic structures remains unproven, whereas the pre- 
sent methods are at their best for just such substances. 
Moreover, the experimental work and computation for 
any type of Patterson procedure are much greater than 
are required for either statistical method. 

I t  will be shown that  the new methods provide means 
for identifying all the crystal classes, and also permit the  
identification of some symmetry elements of value in 
structural work which were not previously identifiable. 
Among the 230 space groups are eleven pairs of enantio- 
morphs (the members of six pairs being distinguishable 
but  not identifiable by X-ray diffraction procedures 
(ter Berg & Jaeger, 1937)). Nowacki (1942), therefore, 
regards the entire list as consisting of 219 space groups; 
it will be shown tha t  all but  four of these are now uniquely 
identifiable. The four occur in two unresolved pairs, 
I222, I212121 and /23 ,  I213, discussed in § 4. 

2. The distribution method 

In  addition to those re flexions which are systematically 
absent we can now identify those sets which are syste- 
matically real and use them for determinative purposes. 
They will be described briefly as centric (Rogers, 1949), 

The number  may  be increased by two ff in Laue symmetry  
~ra it is indicated whether  the  symmetry  planes of the intensity 
array are the  zones [hh0/] or [h,h,2h,1]. Thus Buerger's two sym- 
bols ~mG- - - - - -  and ~ m C 3 1 - -  become ~ m l C - - - - - - ,  
~ l m C -  -- - and ~ m l C 3 1 - -  - - ,  ~ 1 m C 3 1 -  - - .  
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while sets of reflexions whose structure amplitudes are 
not systematically real will be termed acentric. For 
clarity and brevity these terms will be used henceforth 
to describe both the sets of reflexions and their 
characteristic intensity distributions, while the terms 
centrosymmetric and non-centrosymmetric will be reserved 
for the crystal lattice and its projections. 

Structure amplitudes will be systematically real 
whenever they are associated with a centre of symmetry. 
This can occur in three ways under conditions listed for 
each space group in the Structure Factor Tables of Lons- 
dale (1936) or deducible from the International  Tables 
(vol. 1): 

(1) For a centrosymmetric space group, referred to 
the symmetry centre as origin, all the F 's  are real. The 
entire intensity array (and thus any zone) is therefore 
centric. 

(2) Projections along 2, 4, 4, 6 (and their screws) are 
centrosymmetric even though the space group is not. 
When the centre of symmetry of the projection is taken 
as origin all the structure amplitudes in the corre- 
sponding zone are real. This zone only is therefore 
centric. 

(3) One-dimensional projections will be centro- 
symmetric if the axis of projection is parallel to 
2 ( - m ) ,  4, 6. The corresponding central lattice row is 
then centric. 

The use as origin of any point other than the centre 
of symmetry cannot affect the distribution of intensities, 
but will cause the F vectors systematically to occupy 
certain positions only in the x, y plane; e.g. F is alter- 
nately real and imaginary when the origin is midway 
between symmetry centres (see also theorems (1) and 
(2), Buerger, 1949). 

Table 1 summarizes the centric sets of reflexions 
produced by each symmetry element. These, taken in 
conjunction with the known Laue symmetry, provide 
unique characterization of each symmetry element 
when it occurs alone. 

Table 2 (columns 2, 3) summarizes the characteristic 
features of each of the thirty-two point groups. The 
notation is an extension of Buerger's (1942). A centric 
intensity array (condition 1) is denoted by a bar under 
the cell-type symbol only. A centric zone (condition 2) 
is indicated by a bar under the appropriate entry in the 
diffraction symbol. A centric row (condition 3) is 
indicated by the circumflex (^) placed over the appro- 
priate entry, but it is recorded only for 4, as it forms the 
only means, by this method, of distinguishing between 
4 and 4. The sets of centric reflexions recorded in column 
3 are, however, complete, and it will be noted that  
centric rows are frequently masked by centric zones. 
Both the row and zone are then placed within square 
brackets. 

In practice the limited number of reflexions in a row 
will rarely be sufficient for satisfactory recognition of 
the type of distribution. Fortunately, however, the 
method of averages offers a more satisfactory means of 

identifying 2, 4 and 6, so that  it will be very rarely 
necessary to apply the distribution method to a single 
reciprocal-lattice row. 

I t  is concluded from Table 2 that, with the possible 
exception of 4 and 4, each crystal class may now be 
identified uniquely from X-ray intensity data by an 
application of the distribution method. 

A very useful table for the determination of space 
groups may be constructed~ by adding the above signs 
to the entries in Buerger's (1942) table of diffraction 
symbols. 

We may consider as an example the Buerger diffrac- 
tion symbol 6 / m m m C - / -  - - given by the five space 
groups which, with their new diffraction symbols, are: 

(a) 6 / m m m C -  / -  - --. - C6m2, 
(b) 6 / m m m C - / - = -  - C-62m, 
(c) 6 / m m m C - / = - -  - C6mm, 
(d) 6 / m m m C -  / -  - - - C62, 
(e) 6 / m m m C _ _ - / - - -  - C6 /mmm.  

These are interpreted as follows: 

(1) Laue symmetry 6/mmm.  
(2) Primitive hexagonal (C) lattice. 
(3) No systematic absences. 
(4) Only (hh2--hl} reflexions centric in (a). 

Only {hOhl} reflexions centric in (b). 
Only {hkiO} reflexions centric in (c). 
All three principal zones centric in (d). 
Every zone centric in (e). 

Some examples of the use of this method and full 
details of the procedure have already been published 
(ttowells et al. 1949, 1950): for example, the confirma- 
tion of the choice of I2 by Hargreaves & Taylor (1941) 
for m-tolidine dihydrochloride and the space group 
P2/a  for phosphorus triphenyl (Howells, 1949). More 
recently the space group of nitronium perchlorate, 
NO~.C104, has been established as Cc by this method 
(Truter, 1950). 

I t  is concluded from the extended determinative table 
that  the only space groups not resolved by the distri- 
bution method are:~: 

i222 I23 

I212121] I213J 

It  is also evident that  the usefulness of this method 
does not end with the assignment of a space group. If  
we consider Pnm(2) ,  whose new diffraction symbol is 

t A number of cyclostyled copies of this new determinative 
table have been prepared. The space groups appear in the 
order and orientations given by Buerger, and are grouped for 
comparison into sets that were previously inseparable. Copies 
are available on request. 

~: Two pairs of trigonal space groups, C3ml, C31m and C3ml, 
C~lm, were added to these in a preliminary note (Rogers, 1949), 
but subsequent examination showed that both pairs are 
separable by noting the orientation with respect to the 
reciprocal lattice of the planes of symmetry within the intensity 
array (see footnote ~:, p. 456 of this text). 
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m m m P n -  = ,  it  is clearly possible to identify the diad 
axis unambiguously.  This is equally t rue for P m m ( 2 ) ,  
where the information is perhaps even more valuable, 
and would be obtained when distinguishing this space 

g r o u p  f r o m  P 2 2 2  a n d  P m m m .  M a n y  o t h e r  e x a m p l e s  o f  
a s imi l a r  so r t  occur ,  so t h a t  r e fe rence  to  t h e  n e w  t a b l e  
o f  d i f f r ac t ion  s y m b o l s  wil l  f r e q u e n t l y  ass i s t  in  t h e  
u n r a v e l l i n g  of  s t r u c t u r e s .  

T a b l e  1. C e n t r i c  s e t s  o f  r e f l e x i o n s  p r o d u c e d  b y  e a c h  s y m m e t r y  e l e m e n t  

Symmetry axes chosen parallel to [001]. 

A = acentric; C = centric. 

General reflexions (hkl)  Transverse zone (h/CO) 

Symmetry  elements Distribution n = S / Z  Distribution n = S / Z  Distribution 
1 A 1 A 1 A 
I C 1 C 1 C 
2(2x) A 1 O' 1 A 
2(a, b, c, n, d) A 1 A 2 C 
3(31,~) A 1 A 1 A 

C 1 C 1 O 
4(41_a) A 1 O 1 A 

A 1 C 1 C 
6(61-5) A 1 C 1 A 

A 1 A 2 C 

Parallel row (00/) 

n = S I Z  

1 
1 
2 
1 
3 
3 
4 
2 
6 
3 

Table 2. The  statistical characteristics of  the thirty-two crystal classes 

Crystal 
class 

m 

2 
2/m 

r a m 2  
222 
m m m  

4 

4 / m  

~2m 
4ram 
42 
4 / m m m  

3re(l) 
32(1) 
gin(l) 

6 
-6 
6/m 

-6m2 
6ram 
62 
6 ] m m m  

23 
m3 
- 

43m 
43 
m3rrb 

New diffraction 
symbol 

i P  
i P  

2 I m P  - I - 
2 I M P - -  I = 
2 ] r a P -  I - 

m m m P - - =  
m m m P - - - -  
m m m P - - - -  

4 I m P  - I = 
4 I m P  A_I = 
4 I m P -  1 - 

4 / m m m P -  1 = = - 
4 / m m m P -  1 = - - 
4 / m m m P -  / = = = 
4 1 m m m P -  1 - - - 

~ J C -  

~ C -  

3 t a l C - -  -- -- 
- 3 m l C - -  = -- 
-3m l C - -  --  --  

6 1 m 0 - 1  = 
6 / t o O -  1 - -  
61mC_-  I - 

6/mininG-- I -  - = 
6 / m i n i n G - -  / = -- -- 
6 / m i n i n G - -  1 = = = 
6 1 m m m C - -  l -  - - 

m 3 P  = -- 
m 3 P  

m 3 m P  = -- --  
m 3 m P  = -- 
m 3 m P  -- --  -- 

Centric sets 

None 
All 

(o/co) 
(h0Z) 
All 

[(h/C0) masks (hO0), (0/C0)] 
3 principal zones only 
All 

(h/C0) 
(h/C0); (00Z) 
All 

Operators 

[01] 

[Oh] 
[o2]=[o~] 
[O2h] = [02] [Oh] 

[C2v] -- [Oh] [Or] ; do. ; [Or] 2 
[D2]-- [02] ; [02]; [02] 
[D2h] = [Ch] [Co] 2; do. ; do. 

[o4] 
[s,~] 
[04h] = [04] [Oh] 

[(h/c0), {hh0}] ; [{h0/}, (00/)] [D2a ] = [S,] [Co]; [C2] ; [Col [Ch] 
[(hk0), {hO0}, {hh0}] [C4v ] = [Ca] [Cv]; [C~] [Ch]; [Cv] [Ch] 
(h/C0); {h0/}; {hid} [D4]=[C4]; [C2]; [C2] 
A l l  [D4h] = [04] [Or] [Oh] ; [Oo] 2 [Oh] ; do. 

None 
All 

( h 0 ~ 0 }  
{h01d} 
All 

(h/C0) 
(00Z) 
All 

[{hhl}, {hh0}, (00/)] 
[(h/c0), {hh0}, {h00}] 
(h/c0); (h0/); (hid) 
All 

{hk0} 
All 

[{h/c0}, {hh0}] 
{h/c0}; {hhl} 
All 

[0~] 
[08i] = [GB] 

[08~] = I ts]  [O~]; [Oh]; [C~] 
[Ds] =[C3]; [02]; [C~] 
[D3a] = [Osi] [Or]; [Oh] [02]; [Or] 

[Ca] 
[O3h] = [02] [Oh] 
[Cab] = [Od [Oh] 

[D3h]--[C2] [Oh] [Cv]; [Oh] ICy]; [02] [Cv] 
[O6v] =[06] [Cv]; [Ca] [Cv]; do. 
[Da] = [Ca]; [02] ; [02] 
[Dah] = [Ca] [Oh] [Or] ; [Ov] 2 [Oh] ; do. 

[T1] = [02]; [5'3]; [01] 
[Th]=[O2]  [Oh] [Or]; [C3]; [Or] 

[Ta] = [8,] [O~]; [0,]  [O~]; [Oh] [O~] 
[0] =[O,];  [O,2; [O~] 
[Oh] = [o,] [o~] [oi,]; [o~] [o~] [o~]; [o~] [o~] [oi,] 

Multiples 

1/1 
1/1 

1/2 
2/1 
212 

2/2; 2/2; 4/1 
211; 2/1; 2/1 
412; 4/2; 4]2 

4/1 
2/1 
412 

4/1; 2/1; 212 
8/1; 212; 2/2 
4/2; 2/1; 211 
812; 4/2; 412 

3/1 
3/1 

6/1; 1/2; 2/1 
311; 2/1; 111 
611; 2/2; 211 

611 
3/2 
612 

612; 212; 411 
1211; 2/2; 212 
611; 2]1; 211 
12/2; 412; 412 

2/1; 3/1; 1/1 
412; 311; 211 

4/1; 611; 212 
411; 311; 211 
812; 6/2; 412 
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3. The method of averages 

During an examination of the space groups C3ml, 
C31m and C3ml, C-31m, and before recognizing tha t  
the members of each pair are separable as explained in 
the footnote (p. 457), it was observed tha t  the three- 
dimensional Patterson synthesis exhibits a feature 
associated with the plane of symmetry,  namely, an 
accumulation of maxima along that  normal to the 
symmetry plane which passes through the origin. This 
columnar region of high Patterson density, ff parallel 
to [001], for example, implies that  the aggregate of the 

intensities A0~=~ Z l End0 [~, is notably large r hkO 
\ h 

than the sum for any parallel sheet of the reciprocal 

r oro,  o  

projection [001] on the plane of symmetry will have an 
integrated origin peak twice tha t  for other projections. 
We may not, however, conclude from this tha t  A 0 is 
twice that  for other zones, since the peak values at  the 
origin of the projections are not necessarily in the ratio 
2: 1, nor has any allowance been made for the number 
of terms summed for each zone. 

A consideration of symmetry axes led in a similar 
way to the conclusion that  analogous results are ex- 
hibited by the row of reciprocal-lattice points parallel 
to the symmetry axis. When a glide occurs the columnar 
region of high Patterson density (due to the mirror part  
of the symmetry operation) persists, but  is translated 
laterally by the glide translation (Harker, 1936). (The 
translation is not due to the systematic absences, but  
to the fact that  the hkl refiexions then consist of two 
distinct types. This is touched upon in § 4, but  will be 
discussed in detail elsewhere.) Similar remarks apply to 
screw axes and non-primitive cells. 

Wilson (1950) has given a precise interpretation to 
these observations by showing that  in the zones or rows 
predicted above the local average intensity is increased 
by a small integer, the average-multiple. The distribu- 
tion parameter, S, which occurs in both distribution 
functions (equations (1), (2)) may be considered fo~ 
three important sets of reflexions: the general reflexions, 
zones and central rows of the intensity array. In  each 
set S is the local average of the intensities of those 
reflexions which are not systematically absent throughout 
the set. Thus when deriving S for general reflexions the 
systematic absences in a zone due to a glide are in- 
cluded, but  those due to a non-primitive cell are 
excluded. Glide or centring absences are omitted when 
considering a zone, but  a row of screw absences is then 
included. 

For general (hkl) reflexions referred to a primitive 
cell, S has the general value Z which is defined as 
N 

f~, the summation including all atoms within the 
i=1  
primitive cell. This has been identified with the local 
average, ( I ) ,  of the absolute intensities of all general 

reflexions (Wilson, 1942). For a centred lattice the dis- 
tribution parameter for the refiexions referred to a 
primitive lattice can be designated S~ (=Ev)  or, when 
referred to the centred cell, as So. The absolute values 
of the structure amplitudes of a reflexion referred to 
these alternative cells are related by 

I ol=klF l, (3) 
where k=2  for A-, B-, C- or /-centring and 4 for 
F-centring. Hence Sc=k2S~, (4) 

kN 

fY= and, since Z~= ~ kZ~, (5) 
1=1 

we conclude that  

Sc = kEc, whereas S~ = Ev. (6 a, b) 

The modified distribution parameter must be used 
whenever general reflexions are referred to a non- 
primitive cell. 

I f  all the atoms in a projection are resolved, S for the 
zone has the same value, E, tha t  applied to the general 
reflexions. A projection of the cell contents on a plane 
of symmetry,  however, involves superposition in pairs, 
so tha t  the unit cell of this projection can be considered 
to contain half the number of scattering centres, but  
each with doubled scattering power. In like manner 
a group of n equivalent atoms related by a rotation axis 
coalesce in the corresponding line projection to give an 
n-fold reduction in numbers but an n-fold increase in 
the scattering power compared with general reflexions. 
Hence for the zone (or row) concerned 

N]n 
S =  E (nf¢) 2=nE. (7) 

i=1  

Thus the average (and not the aggregate) in a zone 
parallel to a plane of symmetry is twice tha t  of the 
general reflexions or of other zones. Similarly, the 
average of a row in the array parallel, for example, to 
a tetrad axis has an average four times tha t  for the 
general reflexions. Table 1 summarizes the zones and 
rows affected and the multiples appropriate to each 
symmetry operation. 

A two-dimensional projection may be centred as 
a result of: 

(1) lattice (end) centring, 
(2) a glide, 

or (3) both, as [001] in Cmma. 

The first of these has already been discussed. The second 
may be treated in two ways: 

(a) Retain the primitive three-dimensional cell and 
its general parameter E, so that  for the zone affected 

S~=kZ, (8) 

where k = 2 for a, b, c or n glides. 
(b) Refer the projection to its primitive cell. This is 

equivalent to re-indexing this zone only in terms of a 
cell which has no three-dimensional counterpart, and 
whose general parameter is Z*. The zone average S* is 
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then equal to Z*. By either approach the factor 
1/k ( = ½ or 1 respectively) represents the fraction of the 
reflexions which should appear according to the cell 
and indices chosen. 

The combination of a glide and lattice centring may 
be treated by either of the last two methods. By the 
first, equation (8) becomes 

S = k l k ~ E c ,  (9) 

where ~ = 2  for a, b, c, n or d, k S=2 for A, B, C or I 
and 4 for F and E c relates to the centred three-dimen- 
sional ceil. By the second, the problem is reduced to 
that  of a glide in a primitive ceil. The glide d can occur 
only in conjunction with F, but the combination F d  
has a multiple 8 (relative to E) and not 16, since it is 
equivalent in another orientation to Ia  for which the 
product klk~=4; the change in orientation and cells 
converting this to 8. Alternatively, an examination of 
the zone will show that the absences produced by F and 
d are not distinct, i.e. some reflexions are suppressed by 
both and only one-eighth should occur in this zone. 

There is, therefore, a close correspondence between 
the effects produced by a plane of symmetry and a 
glide: that  the average intensity of the reflexions which 
should occur in the zone (which is by definition the 
parameter S) is twice that  occurring elsewhere in the 
intensity array, whether this be reckoned on the basis 
of a primitive or a centred cell. This is of importance as 
it permits the zone multiples for the crystal classes in 
Table 2 to hold irrespective of whether individual space 
groups within a class incorporate symmetry planes or 
glides parallel to the zone. 

'Centred' one-dimensional projections are treated 
in the same way as centred two-dimensional projections 
and give similar results, so that  s = n E  covers both 
screws and rotors. A full list of values of S /E  ( = n or k 
according to the method of analysis) is given for both 
screws and glides by Wilson (1950). 

I t  is concluded, therefore, that  the ratio S / E  for a 
zone or a row is characteristic of the associated trans- 
lation-free symmetry operation and is independent of 
the type of cell in which it is found, provided both S 
and Z relate to the same cell, i.e. either to the primitive 
or the centred cell. Table 2, column 5, lists the zones and 
the rows affected on combining symmetry elements to 
form the thirty-two point groups and denotes in each 
the multiples for the row and the zone normal thereto, 
listed in the conventional order. Thus mm(2) gives rise 
to 2/2, 2/2, 4/1: 

(lies in h0/), 
(zone parallel to m), 

(lies in 0k/), 
(zone parallel to m), 

h00 n = 2  
Okl n = 2  

0k0 n = 2  
hOl n = 2  

OO1 n = 4, 
hkO n =  1. 

These multiples can be deduced by reference to the 
equivalent positions in the cell. Especially in the more 

complex point groups, however, it is easier to use an 
operator method which may be illustrated by the third 
entry in the above symbol. A single plane of symmetry 
parallel to a reciprocal-lattice row gives n = 2  for the 
row but n = 1 for the transverse zone. Denote this by 
[Cv] =2/1 .  There are two such planes operating simul- 
taneously in this example. Hence 

[0~] ~ = 2 / 1 . 2 / 1  = 4 / 1 .  (11)  

Note that  the diad axis is an 'implied' symmetry ele- 
ment arising automatically on combining the two per- 
pendicular planes, and for this reason it is frequently 
omitted from the designation of this point group. All 
such implied symmetry elements should be omitted 
from the operator products. These are listed in Table 2, 
column 4. This interaction of multiples (which gives n 
as high as 12 in some cases) prevents us from indicating 
symmetry planes and axes by their symbols in Buerger's 
diffraction symbols. 

A zone without glide absences may have n =  1 or 2, 
and the multiple is probably best found by comparing 
the absolute intensities, or z values (Howells et al. 1950), 
of a row of reflexions common to this zone and any other 
for which n is known to be unity. The intensities in each 
zone are measured, corrected and converted to the 
absolute scale (see Wilson, 1942), in each case on the 
assumption that  <I> = Z. They will agree ff n = 1, but 
have the ratio 2:1 throughout if n = 2 ,  that  is, if the 
zone is parallel to a plane of symmetry. Alternatively, 
if the experimental conditions can be approximately 
duplicated for the recording of each zone, the direct 
averages may be compared more quickly but less 
reliably. 

The multiple for a row may be 1, 2, 3, 4, 6, 8 or 12, 
and despite the paucity of the reflexions in the row such 
large factors should be readily, if only approximately, 
found. The problem will not often arise because rotor 
multiplicities are often indicated directly by the Laue 
symmetry, and diad axes are more readily and more 
satisfactorily indicated by the transverse centric zone. 
The average of a row is only necessary for distinguishing 
4 from 4, for which only the 00l reflexions provide 
distinguishing features as follows: 

4(00/)" 4(00/) 

Acentric Centric 
n = 4  n = 2  

The distinction is doubtless better ascertained by the 
method of averages, as it offers a wider margin of dis- 
crimination and is less likely to be affected by paucity 
of reflexions or (as is shown later) by anomalous struc- 
tural features. These remarks, of course, apply with 
equal force to any row problems that may arise. 

I t  is evident that  the method of averages is par- 
ticularly valuable for indicating planes of symmetry in 
either centric or acentric lattices. As a general rule it is 
preferable to deal with zones rather than rows, but when 
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large multiples are sought in the latter this is not so 
important. I t  is concluded that  by this method 28 
classes are uniquely indicated, the two pairs 1 , i  and 
3, 3 remaining undivided. As an example we can con- 
sider the separation of Pro, P2 and P2/m: 

Pm P2 P2/m 
OkO Cer~tric Acentric 

n----1 n=2 n=2} 
hOl Acentrie Centric All centric 

n = 2  n = l  n = 2  

Pm is quickly identified by its acentric (hO1) zone; 0k0 
would be examined only if there were enough reflexions, 
or for confirmation of a doubtful distribution. The other 
two may be distinguished by the multiple for the (hO1) 
zone or by the distribution type of some other zone (say 
0kl). The latter is quick, but the former requires a com- 
parison of the (hOl) with some other zone. There is no 
real hardship in either, as at least one other zone will 
normally be required for the determination of the 
structure. 

Atoms sometimes lie on the symmetry element under 
consideration, and do not then contribute to this n-fold 
increase in the average intensity. When known to 
occupy such positions they may be allowed for in the 
statistical treatment by regarding them as coincident 
groups of n scattering units each of power fk/n with 
which a new 'general average', Y-', can be calculated 
which is exactly 1/nth of that  observed for the affected 
reflexions: 

This special value, 27, is, of course, used only for the 
affected row or zone. 

Conversely, the departure of the experimental value 
of n from the correct integer may be used to derive an 
estimate of the number and kind of atoms lying on this 
particular symmetry element if structural details are 
neither known nor suggested by the space group and 
cell contents. Anomalous values of n in a zone can be 
estimated with some precision by methods discussed 
earlier. No such precision is likely when dealing with 
a row, partly because of the poor resolution in the corre- 
sponding projection. 

I t  should be noted that  atoms in any other special 
positions (including those on symmetry elements 
crystallographically equivalent to that  under con- 
sideration) will not cause departures from the integral 
values of n, provided that  the atoms are sufficiently well 
resolved in the projections, nor are the conclusions 
invalidated by the presence of heavy atoms. I t  seems 
likely, therefore, that  the method of averages can be 
employed successfully for structures which do not well 
fulfil the conditions required by the distribution method. 

Finally, it should be observed that  this method, like 
the first, permits the identification of symmetry ele- 
ments for structural purposes as distinct from the 
assignment to a space group. 

4. The 217 diffraction groups and the space 
groups I222,1212121; 123, 1213 

The systematic statistical features of the intensity array 
discussed in the preceding sections offer in most in- 
stances alternative means for the unique identification 
of the crystal class from a study of X-ray intensity data 
only. The extensive resolution of space groups is in- 
cidental to this and is made possible by differentiation 
within the crystal class on the basis of the systematic 
absences, a combination of procedures which fails only 
for the above two pairs of space groups. Since only 
zones or central rows in the reciprocal lattice can have 
multiple averages, and zones, rows or the whole inten- 
sity array may be centric, it is evident that  these syste- 
matic features, together with the Laue symmetry and 
systematic absences, can be considered as elements 
combined rather after the manner of a point group (see 
theorem (3), Buerger, 1949). These combinations, which 
will be termed'  diffraction groups ',~ describe the known 
systematic features present in the intensity array 
resulting from the diffraction of X-rays by the crystal 
lattice. They are summarized in Table 3, where the 
order and the cell orientations follow the International 
Tables. The information deducible by intensity statis- 
tics is there summarized within brackets which are 
placed logically between the Laue symbol and that  
describing the systematic absences, although in prac- 
tice both the latter are determined prior to the applica- 
tion of the statistical analysis. (Strictly speaking, the 
Laue symmetry is deducible from the crystal class 
criteria, but it is more easily recognized and limits the 
number of classes which the statistical criteria are 
required to distinguish.) The multiples are indicated as 
in § 3, but centric rows or zones are here indicated by 
enclosing the multiple in round brackets. A centric array 
is indicated by enclosing the entire statistical summary 
symbol in round brackets instead of the square ones 
otherwise used. Row multiples are always given 
because, as was shown in the last section, they may, 
through coupling of the symmetry elements, have 
higher multiples than the zones in which they lie. 
Rows are, however, indicated as centric only when they 
are not already included in a centric zone. 

Viewed in this way, it is evident that  the statistical 
symbol is derived only from the crystal point group and 
partakes of similar properties. I t  is for this reason that  
space groups containing identical symmetry elements 
differently disposed cannot be distinguished either by 
statistical methods or by systematic absences. For- 
tunately, the only examples are the two pairs at present 
under discussion. 

They may be treated as one problem, the cubic pair 
being a special case of the orthorhombic pair. The three- 
dimensional Patterson syntheses, drawn in Fig. 1 for 

This term has been used by  Buerger twice (1946, p. 593; 
1950, p. 97) as synonymous with his diffraction symbols. I t  is 
proposed, however, to reserve the term for the full set of 
systematic characteristics and their symbolic representation. 
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a single atom, show tha t  if such an atom is identifiable 
in a practical problem these space groups may be dis- 
tinguished. Thus a comparison of any two principal 
Patterson projections reveals that  peak A is at height 
z = 0 in 1222 and z = ½ in 1212121. The reverse is true for 
peak B. The same conclusions could also be reached 
from a comparison of the Harker section at z = 0 (or ½) 
with the basal projection. This kind of approach is akin 
to tha t  followed by Buerger in developing his imphca- 
tion theory, and ff suitably studied should not require 
an identifiable heavy atom since every atom will give 
rise to analogous relations between the Harker peaks. 
Such studies reveal tha t  the intensities associated with 
I2~2121 are of two distinct types: (a) hkl all even, and 
(b) only one index even. The reflexions from 1222 are 
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Fig. 1. (a) Pat terson diagram for I222; 

(b) Patterson diagram for 1212121. 

all congruent with set (a) from I212121. Both types 
have the same intensity averages and apart  from the 
principal zones both are acentric. The difference is 
essentially one of ' s t ructure ' ,  but will not be discussed 
in this paper since the systematic features distinguishing 
the two types are apparently not statistical in character. 
The only methods known at present for exhibiting the 
difference are those based on the Patterson projections 
and sections. Except in Buerger's implication method 
these will demand a recognizable atom within the 
structure, but  all of them entail a great deal more labour 
of experiment and computation than the statistical 
methods. 

In view of the remarks of the last paragraph and 
possible future developments it would be unwise to 
claim that  the diffraction group symbols are exhaustive, 
but the statistical symbols recorded in Table 3 certainly 
contain all the systematic statistical features discovered 
so far. 

5. Summary 

I t  has been shown that  whereas in the past the data 
directly evident from the diffracted X-ray intensities 
were insufficient to characterize the crystal class and 
a majori ty of space groups, two new statistical pro- 
eedures provide means for the unique characterization 

of all crystal classes and make it possible to determine 
uniquely all but four of the 219 space groups. Some 
comments have been offered on the choice of statistical 
method in typical problems and the factors likely to 
comphcate each. 

The four refractory space groups I222, 1212121 and 
I23, 1213 are not distinguishable by statistical methods 
but are, at least in principle, separable by the more 
laborious Patterson methods discussed in §4. I t  is 
fortunate that  these space groups are rare; Nowacki 
(1942), in his occurrence statistics, has recorded only 
two examples of 123 and none of the other three. These 
two were assigned on considerations of molecular 
symmetry and packing. 

The members of each of the eleven pairs of enantio- 
morphous space groups are also inseparable by statis- 
tical methods. The diffraction effects from six pairs are 
distinguishable by Laue photographs, which do not, 
however, permit of their identification (ter Berg & 
Jaeger, 1937). 

A symbol (an extension of Buerger's) is introduced to 
describe the systematic point-group-like features of the 
intensity array. They represent t h e '  diffraction groups'  
of which 217 are recorded in Table 3. The statistical 
information recorded within them is complete, but  the 
systematic features distinguishing both the enantio- 
morphous space groups and the remaining four space 
groups have been omitted. 

We may conclude, therefore, tha t  all the 219 space 
groups are, in principle at  least, uniquely determlnable 
from X-ray intensity data only. 

Finally, it has been shown tha t  either method can be 
used to identify symmetry elements for structural pur- 
poses, and tha t  in some suitable cases the method of 
averages can give some indication of the number and 
nature of the atoms located on individual symmetry  
elements. 

I t  is a pleasure to acknowledge my indebtedness to 
Dr A. J. C. Wilson for his generous interest and valuable 
comments throughout the development of this study; 
to Prof. Nowacki for assistance in locating substances 
assigned to several space groups; and to Mrs M. R. 
Truter  for access to data on nitronium perchlorate and 
permission to mention it here. My thanks are also due 
to Mr R. Gwynne Howells and Mr D. C. Phillips whose 
textual criticisms have helped in the removal of a 
number of obscurities, and to Miss O. Powell for her 
care in the typing of the tables. 
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Table 3. The 217 diffraction groups 

The multiple gives S /E  for the principal rows and zones of the intensity array if both S and E refer to the same unit  cell, 
whether this be primitive or centred• The sequence and orientations of the space groups conform to the International Tables• 
See text  (pp. 460, 461) for description of the nomenclature adopted. 

Space group 

C I P1 
C~ P i  

Diffraction group Space group Diffraction group 
i [1 /1 ] .P  D ~  P m n a  mmm(4/2;  4/2; 4 /2 ) .P - -na  
I (1 /1 ) .P  DS~a Pcca .Pcca 

D~a Pbam .Pba--  
2 /m[(1) /2] .P- - / - -  D~ ° Pccn .Pccn 

• P - - / c  D ~  Pbcm . Pbc-- 
• C-- / - D ~  P n n m  . P n n - -  
. C - / c  D ~  P m m n  . P - - - - n  

2 /m[2 / (1 )] .P- - / - -  n ~  Pbcn .Pbcn 
• P21/-- D ~  Pbca .Pbca 
• C-- / -- D ~  Prima . P n - -  a 

2 / m ( 2 / 2 ) . P - - / - -  D ~  Cmcm . C - c -  
• P 2 1 / -  D ~  Cmca . C -  ca 
• C - - / - -  D 19 Cmmm . C - - -  
• P - - / c  D~ ° Cccm . C c c -  
.P2~/c D~2~ Cmma .C--  - a  
• C- - / c  D ~  Ccca . Ccca 

D ~  F m m m  . F - -  -- -- 
n ~  Fddd .Fddd 
D ~  I m m m  . I - - - - -  
D ~  Ibam . I b a -  
D ~  Ibca .Ibca 
D ~  I m m a  . I - - - - a  

cf 

c~ 
c; 
cl 
c[ 
cl 

c~ 

c~ 
c~ 

Pm 
Pc 
Cm 
Cc 
P2  
P2~ 
C2 
P 2 / m  
P21/m 
C2/m 
P2/c 
P21/c 
C2/c 

clv 

C~ 
C~ 
CL 
C~ 

C~ 

c[~ 

cg 

Cg 

c[~ 
Di 
n~ 
D~ 
Di 
n~ 
D~ 
n[ 
m~ 
D~ 

D[~ 
D~ 

D~ 

P r o m  
Pmc 
Pcc 
P m a  
Pca 
Pnc  
P m n  
Pba 
Pna  
P n n  
Cram 
Cmc 
Ccc 
A tom 
Abm 
Area 
Aba 
~ m m  
Fdd 
I m m  
Iba 
I m a  
P222 
P2221 
P2,212 
P2i2121 
C222 i 
C222 
2"222 
I222 
I2i2121 
P?nmTt~ 
P n n n  
Pccm 
Pban 
P m m a  
P n n a  

mmm[2/2; 2/2; 4 / ( 1 ) ] . P - - -  -- 
. P - - c - -  
• Pcc -- 
. P - - a - -  
• P c a  --  
• Pnc -- 
. P - - n - -  
.Pba--  
• Pna- -  
• P n n  -- 

.C - - c - -  
• Ccc-- 
, A - - - - ~  
.Ab- -  -- 
. A  - -a--  
.Aba--  

• Fdd -- 

• I b a  --  
. I - - a - -  

m m m [ 2 / ( 1 ) ;  2/(1); 2 / ( 1 ) ] . P - - - -  
.P - -  --21 
• P2121- 
.P2i212i 
.C--  --21 

mmm(4/2; 4/2; 4 /2) .P- -  -- -- 
• P n n n  
• Pcc -- 
• Pban 
. P - -  - - a  
• Pnna  

si  P~ 

cl p4 
C~ P4 i 
C~ P4  z 
C~ P4 a 
c~ i4 
C~ 141 
Cla P 4 / m  
C~h P42/m 
C~h P4/n  
C ~  P4~/n 
C~h I 4 / m  
C~h I41/a 

D~a P-42m 
D~a P-42c 
D~a P-421m 
D~d P-421c 
D~a C42m 
D~a C-~2c 
D~a C42b 
D~a C-42n 
D~a F-42m 
n~ ° F-42c 
D ~  1-42m 
D~ ~2d  
C~v P 4 m m  
C~v P4bm 
car P4cm 
C~v P 4 n m  

4 / m [ ( 2 ) / ( 1 ) ] . P - / -  
. 1 - / -  

4/m[4/(1)]. P - / - -  
• P4 i / - -  
.P4.,/-- 
• P4 i / - -  
. I - / -  
• 1 4 1 / - -  

4/.,(4/2). P - / -  
. P 4 2 / - -  
. P - - / n  
• P42/n 
. I - / -  
.I41/a 

4/mmm[4/(1); 2/(1); 2 / 2 ] . P - - - -  
. P - -  --c 
. P - - 2  i -  
P - -  21e 
C - l - - -  
C - / -  - c  
C - / -  - b  
O - / -  - n  
P - ~ - - - -  
F - ~ -  --c 
I - / - - - - - -  
I - - / - -  --d 

4~mum/8~(1 ); 2/2; 2/2]. P - -  / -- - -- 
. P - / - - b - -  
. P - - / - - c - -  
. P - - / - - n - -  
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T a b l e  3 (cont.) 

Space group 
C ~  P4cc 
C~v P4nc 
C~v P4mc 
Csv P4bc 
O~,, I 4mm 

6"I~ z4cd 
D~ P42 
D~ P42~ 
D~ P4~2 
D~ P4~2~ 
D~ P432 
D~ P4,2~ 
D~ P432 
D~ P4a2~ 
D~ Z42 
D~ ° 14~2 
D~a P41mmm 
D~a P41mcc 
Daa P41nbm 
D~a P41nnc 
D~r, P41mbm 
D ~  P41mnc 
D ~  P41nmm 
DS~ P41ncc 
D ~  P41mmc 
D~ ° P41mcm 
D } i  P41nbc 
D ~  P41nnm 
D~ P41.~bc 
D~i P4/mnm 
D~i P41nmc 
D~ P 4 I ~  
D ~  I41mmm 
D ~  I41mcm 
D}~ z4/~mg 
D~ Z4/acd 

Diffract ion group  

4/mmm[8/(1) ; 2/2; 2/2]• P - -  I -- cc 
. P - - / - - n c  
• P - I -  - c  
.P - - I - -bc  
. I - - / - -  - -  - -  

. I - / - c -  

. z - I -  -d  

.Z- l -cd 
41mmm[41(1); 2 / ( 1 ) ;  2 1 ( 1 ) ] . P - I - - -  

. P - / - 2 ~ -  

.P41l-- - -  - -  

• P 4 ~ ]  - -  2 ~ - -  

• P 4 3 1 - -  - -  - -  

• P 4 ~ / - -  2 , - -  

. P 4 ~ ] - -  - -  _ 

• P 4 ~ / - -  2 1 - -  

. I - - / - -  - -  - -  

• . I 4 i l - -  __ __ 

4 1 m m m ( 8 / 2 ;  4/2; 4 / 2 ) . P - - l - - - -  
.P - - / - - c~  
. P - I n b -  
• P - Innc 
. P - I - b -  
. P - / - n ~  
. P - / n -  - 
. P - Incc 
• P - I -  - ~  
. P - l - c -  
• P - -  Inbc 
• P - I n n  - 

. P - I - b e  

. P - / - n -  

. P - ] n - c  

. P -  / n c -  

. I - / -  - - 

. I - I - c -  

. I - l a - d  

.Zlacd 

6"] 
6"] 
c~ 

6"3 
6"3~ 
C3~ 
R3 
C~ 
R~ 

313/1].6"-- 
.6"3~ 
• C3~ 
• R - -  

~ ( 3 / 1 ) . 6 " -  

c,% 
Da ~ 
D] 
m~ 
D~ 
D~ 
D~ 
ml 
D]~ 

D~ 
Di~ 
Da~ 
D~ 

C3ml 
O31m 
C3cl 
031c 
R3m 
R3c 
6"312 
6"321 
6"3x12 
6"3x21 
6"3312 
6"3321 
B32 
C31m 
C~lc 
C-3ml 
C~cl 
R~m 
R~o 

~m116/1; (1)/2; 2 / 1 ] . C -  - - 

~1m[6/1; 2/1 ; (1)/2]. C -  - - -  

gml [6 /1 ;  (1)/2; 2 /1 ] .C - - c - -  
~ lm[6/1 ;  2/1; ( 1 ) / 2 ] . C - - - - c  
~ml[6 /1 ;  (1)/2; 2 / 1 ] . R - - - -  
3m116/1; (1)]2; 2/1].R--c--  
g lm[3 /1 ;  1/1; 2 / ( 1 ) ] . 6 ' - - -  -- 
3m113/1; 2/(1); 1 / 1 ] . 6 " - - - -  
~1m[3/1; 1/1; 2 / ( 1 ) ] . C 3 ~ - - -  
gml[311;  2/(1); 1 / 1 ] . 6 " 3 ~ - -  
31m[3/1;  1/1; 2/(1)].6"3 x -  - -  

~m113/1; 2/(1); 1 / 1 ] . 6 " 3 , - -  
gml [3 /1 ;  2/(1); I / 1 ] . R - - - -  

g lm(6 /1 ;  2/1; 2/2).6"-- - - -  
31m(6/1;  2/1; 2 /2 ) .6" - - - -c  
~ml(6 /1 ;  2/2; 2 / 1 ) . 6 " - - - -  
~ml-(6/1; 2/2; 2 / 1 ) . C - - c - -  
3m1(6/1;  2/2; 2 /1 ) .R - -  - - -  
~ml(6 /1 ;  2/2; 2 / 1 ) . R - - c - -  

Space group 
c8'~ C~ 
c~ c6 
C~ C61 
C~ C6~ 
C~ C6, 
C~ C6~ 
C~ C6a 
C~ 061m 
O~a G6~/m 

Diffract ion g roup  

61m[(3)12 ]. C-- 1-- 
61m[61(1)]. C-- I - -  

• G61/-- 
• O 6 1 / -  

. C 6 4 -  

. C 6 J -  

• C 6 J  - 

6 1 m ( 6 1 2  ) . C-- I-- 
• C 6 a l  - -  

Dh 
D~a 
D~a 

D~ 
D~ 
D~ 
D', 
D~ 
D~ 
Dh 
D~h 
D~a 
D~h 

C-6m2 
C-6c2 
0-62m 
C-62v 
C6mm 
C 6cc 
C6cm 
C6mc 
C62 
C612 
C6s2 
C632 
C642 
O6a2 
C6/mmm 
C6/mcc 
C6/mcm 
C6/mmc 

61mmm[612; 2/2; 4/(1)]. C - - / - -  -- -- 
61mmm[612; 2/2; 4/(1)]. C--  / -- c--  
61mmm[6/2; 4/(1); 2/2 ] . C -- / -- -- -- 
61mmm[6/2; 4/(1); 2/2 ] . C--  / -- -- c 

61mmm[121(1); 2/2; 2]2]. C -- / -- -- -- 
. C - l - c c  
•O-l-t- 
• C-l- -c 

6/mmm[61(1); 2/(1); 21(1)].o-I--- 
• C 6 1 / - -  _ _ 

. C 6 J - -  -- -- 

. C621-- -- _ 

• C 6 3 / - -  _ _ 

• C 6 a / - -  _ _ 

6 1 m m m  ( 1 2 1 2 ;  4/2; 4/2). C--  / -- -- -- 
.C- - / - -cc  
•O-- I - -c- -  
• C-I- -c 

T 1 

T 2 

T a 
T 4 

T 5 

T~ 
T~ 
T~ 
T', 
T~ 
T~ 
T~ 

P23  
F23  
I23  
P213 
I213 
Pro3 
Pn3 
2,m3 
Fd3 
Ira3 
Pa3 
Ia3 

m312/(1); 3/1; I / 1 ] . P - -  -- _ 

. p 2  x -  -- 

m3(4/2;  3/1; 2 / 1 ) . P - - - -  
. P n - -  -- 
• 2 , - - - - - -  
.2 ,d--  -- 

.zoa-- _ 

T~ 
T~ 
Ti 
T~ 
T~ 
T~ 
01 
0 ~ 
0 3 

0 4 

0 5 
0 6 

07 
0 a 
oi 
o~ 
oi 
oi 
oi 
o~ 
oi 
o~ 
o~ 
o i  o 

P-43m 
F~3m 
1-43m 
P43n 
2,43c 
I~3d 
P43  
P433 
2'43 
2,413 
143 
P433 
P413 
I413 
Pm3m 
Pn3n 
Pm3n 
Pn3m 
2,m3m 
Fm3c 
2,d3m 
2,d3c 
Im3m 
Ia3d 

m3m[41(1); 6/1; 2 / 2 ] . P -  - -  

. P -  - r~  

. /~- -  --C 

. I - -  - -d  
m3m[41(1); 3/1; 2 / (1 ) ] .P - -  -- _ 

• P 4 3 -  _ 

• F 4 i -  - -  

• P 4 1 -  _ 

. P 4 1 -  - 

• 1 4  I -  _ 

m 3 m ( 8 1 2 ;  6/2; 4 / 2 ) . P - - _  
. P n - n  
.1 ) -  - n  
• P n -  - -  

• A T p -  - -C  

• 2 , d - -  - -  

. 2 , d - - c  

. I - - - - - -  
. I a - -d  


